Scrape NFL stats from ESPN
scrape_espn_stats(season = 2019, stats = "receiving", season_type = "Regular")
character or numeric - greater than 1990
character - either receiving, passing, or rushing
character - either Regular or Playoffs
tibble
scrape_espn_stats(season = 2000, stats = "passing")
#> Scraping passing stats from 2000 Regular season!
#> # A tibble: 101 × 20
#> season season_type pass_r…¹ name team pos games…² pass_…³ pass_…⁴ comp_…⁵
#> <dbl> <chr> <int> <chr> <chr> <chr> <int> <int> <int> <dbl>
#> 1 2000 Regular 1 Peyt… IND QB 16 357 571 62.5
#> 2 2000 Regular 2 Jeff… SF QB 16 355 561 63.3
#> 3 2000 Regular 3 Elvi… KC QB 15 326 547 59.6
#> 4 2000 Regular 4 Daun… MIN QB 16 297 474 62.7
#> 5 2000 Regular 5 Bret… GB QB 16 338 580 58.3
#> 6 2000 Regular 6 Vinn… NYJ QB 16 328 590 55.6
#> 7 2000 Regular 7 Stev… CAR QB 16 324 533 60.8
#> 8 2000 Regular 8 Mark… JAX QB 16 311 512 60.7
#> 9 2000 Regular 9 Kerr… NYG QB 16 311 529 58.8
#> 10 2000 Regular 10 Rich… OAK QB 16 284 473 60
#> # … with 91 more rows, 10 more variables: pass_yards <dbl>, pass_avg <dbl>,
#> # pass_yards_game <dbl>, pass_long <int>, pass_td <int>, pass_int <int>,
#> # sack <int>, sack_yards <int>, qbr <lgl>, pass_rating <dbl>, and abbreviated
#> # variable names ¹pass_rank, ²games_played, ³pass_completed, ⁴pass_attempts,
#> # ⁵comp_percent